Reducing the Number of Function Evaluations in Mesh Adaptive Direct Search Algorithms
نویسندگان
چکیده
The Mesh Adaptive Direct Search (MADS) class of algorithms is designed for nonsmooth optimization, where the objective function and constraints are typically computed by launching a time-consuming computer simulation. Each iteration of a MADS algorithm attempts to improve the current best-known solution by launching the simulation at a finite number of trial points. Common implementations of MADS generate 2n trial points at each iteration, where n is the number of variables in the optimization problem. The objective of the present work is to reduce that number. We present an algorithmic framework that reduces the number of simulations to exactly n+1, without impacting the theoretical guarantees from the convergence analysis. Numerical experiments are conducted for several different contexts; the results suggest that these strategies allow the new algorithms to reach a better solution with fewer function evaluations.
منابع مشابه
MADS/F-Race: Mesh Adaptive Direct Search Meets F-Race
Finding appropriate parameter settings of parameterized algorithms or AI systems is an ubiquitous task in many practical applications. This task is usually tedious and time-consuming. To reduce human intervention, the study of methods for automated algorithm configuration has received increasing attention in recent years. In this article, we study the mesh adaptive direct search (MADS) method f...
متن کاملHybrid Mesh Adaptive Direct Search and Genetic Algorithms Techniques for industrial production systems
In this paper, computational and simulation results are presented for the performance of the fitness function, decision variables and CPU time of the proposed hybridization method of Mesh Adaptive Direct Search (MADS) and Genetic Algorithm (GA). MADS is a class of direct search of algorithms for nonlinear optimization. The MADS algorithm is a modification of the Pattern Search (PS) algorithm. T...
متن کاملAN ADAPTIVE IMPORTANCE SAMPLING-BASED ALGORITHM USING THE FIRST-ORDER METHOD FOR STRUCTURAL RELIABILITY
Monte Carlo simulation (MCS) is a useful tool for computation of probability of failure in reliability analysis. However, the large number of samples, often required for acceptable accuracy, makes it time-consuming. Importance sampling is a method on the basis of MCS which has been proposed to reduce the computational time of MCS. In this paper, a new adaptive importance sampling-based algorith...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملErratum: Mesh Adaptive Direct Search Algorithms for Constrained Optimization
In [SIAM J. Optim., 17 (2006), pp. 188-217] Audet and Dennis proposed the class of mesh adaptive direct search algorithms (MADS) for minimization of a nonsmooth function under general nonsmooth constraints. The notation used in the paper evolved since the preliminary versions and, unfortunately, even though the statement of Proposition 4.2 is correct, is not compatible with the final notation. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 24 شماره
صفحات -
تاریخ انتشار 2014